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LE'lTER TO THE EDITOR 

Fractional strings hypothesis and non-simple laced 
integrable models 

Mdrcio Jos6 Martinsti 
Department of Physics, University of California, Santa Barbara, CA 93106, USA 

Received 20 September 1990 

Abstract. We discuss the ground ~ t a t e  and some elementary excitations ofthe E,, non-simple 
laced integrable models. The zecos of the associated Rethe ansatz equations are character- 
ized by a special distribution in the complex plane, which is different from the usual string 
hypothesis. The introduction of this new solution makes it possible to calculate exactly 
various properties in the thermodynamic limit. The finite-size Corrections to the eigenspec- 
m m  strongly suggest that the Bp WeSS-Zumino-Witten-Novikov models are the underlying 
conformal field theory for these non-simple laced models. 

Among the important outcomes of conformal invariance are the direct relations between 
the eigenspectra of conformal invariant systems and their associated central charges 
and conformal dimensions [l]. In principle, one can infer the associated operator 
content for a given conformal model by using exact diagonalization or Lanczos 
approaches. However, these traditional procedures are limited by the rapidly increasing 
size of the associated Hamiltonians or transfer matrices, respectively, and in many 
cases do not give conclusive results [2-41. Recently, ZD integrable models solved by 
the Bethe ansatz approach have provided explicit realizations of conformal field 
theories. In these gapless models, numerical [ll-14, 16]/analytical IS-IO] manipula- 
tions of the associated Bethe ansatz equations (BAE) can determine the conformal 
anomaly and the conformal dimensions to within high precision. Most of these 
calculations have been performed in the simple-laced exactly solved (SLES) models. 
All the results point to the fact that these SLES models are the lattice realizations of 
the associated Wess-Zumino-Witten-Novikov (WZWN) conformal field theories. 
Although the BAE have been established/conjectured for some non-simple laced exactly 
solved (NSLES) models [17], they have not been explicitly manipulated either in the 
thermodynamic limit ( L - r o ~ )  or to obtain the finite-size corrections to the eigenspec- 
trum. In addition, several authors [15,18-211 have recently applied the thermodynamic 
Bethe ansatz method to study the ultraviolet behaviour of perturbed conformal field 
theories. This technique seems to work only for simple laced models [21]. Motivated 
by these facts and considering that previous studies have only concentrated on the 
simple laced models, we believe it important to analyse the BAE in the non-simple 
laced cases. I n  this letter we choose the Bp NSLES models (in their fundamental 
representation) in order to show some exotic properties of the zeros distribution of 
the associated RAE. We show for the first time that the ground states are characterized 
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by some special configurations; we have denoted this by the fractional string hypothesis 
(FSH) to differentiate it from the traditional string hypothesis [22]. As a consequence, 
we calculate the ground state energy, the densities of the BAES zeros, and the sound 
velocities. We also discuss the finite-size scaling properties for the ground state and 
for some lowest excitations. 

The BAE and the eigenspectrum (E)  of these E,, models are 

m, m2 

k=B k - I  
(f,(~;))‘=- n A(A;-A;) n L,(A;-A:) 

m, m,+r 

I = - n  ~ , ( A : - A : )  n n ~ - , ( A ; - A ? * )  I =2,3, .  . . , p -  1 
k - l  r = l . - l  k = l  

where m,, I = 1,2, .  . . , p are integer numbers that specify the particular sector in the 
Hilbert space. 

After a careful study of (1) and of the corresponding B,, NSLES Hamiltonian [17], 
we find that the ground state is characterized by a set {A,  = a:, . . . , A ; - ‘  = a,”-’, 
Af = ap*$i(l+ aj)} ,  where a;., i = 1,2, . . . , p are real parameters. In table 1 we show 
the complex part of the A,P zeros for p = 2,3  and L = 40. Extrapolating these results 
using VBS approximates [23], we conclude that S j + O  when L+co and A f = a p i $ i .  
This picture is different from that of the SLES (in their fundamental representation) 
case in two ways: first, in the SLES models the ground state is characterized by a set 
of only real solutions; and second, because Af = a;+$ does not fit the traditional 
string hypothesis. The imaginary part of our solution for Af is just one half of the 
known 2-string hypothesis, hence justifying the FSH name. 

In order to calculate the ground state energy per particle (e&), the densities of 
roots ( g k ( x ) ) ,  and the sound velocities (t) ,  we substitute back the FSH into ( I ) .  After 
some algebraic manipulations, differentiating with respect to a;, and using the definition 
ak = l /L(n)  - a)-,), we generate p-coupled integral equations for the densities uk. 

Table 1. The imaginary parts of the A f ’ s  zeros for p = 2 , 3  and L=40 .  

1 
2 
3 
4 
5 
6 
7 
8 
9 
IO 

p = 2  

0.297 6708 
0.267 6077 
0.2608155 
0.257 9259 
0.256 3760 
0.255 4448 
0.254 8551 
0.2544803 
0.254 2566 
0.254 1517 

p = 3  

0.310 1478 
0.279 1826 
0.267 9395 
0.263 1732 
0.260 6084 
0.259 0641 
0.258 0851 
0.257 4624 
0.257 0905 
0.2569161 
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These integral equations are solved by elementary Fourier techniques, and we summar- 
ize the results here 

[4/(2p - 1)J c0s[a(2p - 1 - k)/(2p - 1)J C O S ~ [ ~ X T / ( ~ ~  - 111 
c o s h [ 4 ~ ~ / ( 2 p  - l ) ]  +cos[(2p - 1 - k ) a / ( 2 p  - l ) ]  

k = 1,2, .  . . , p-1 

1 

( 2 p  - 1) c o s h [ 2 ~ ~ / ( 2 p  - l)]’ 

a‘(x) = 

(3) 

(4) u”(x) = 

The ground state energy per particle is then calculated using ( l ) ,  (2), and the result 
is 

( 5 )  
&z= - U p + 1 / 2 ( 2 p  - 1 ) l - W / ( 2 ~ -  1)1+2 M 2 )  

i p - i  

where +(x) is the Euler psi-function. As for any problem which is solved by Bethe’s 
ansatz, the low-lying excited states are obtained introducing holes into the ground 
state picture. This generates p excitation branches, and all of them have a common 
slope when the total momentum ( K )  goes to zero. The low-momentum dispersion 
relation ( & ( K ) )  is &(K)=[?r/(Zp-l)]/KI,  K - 0 .  The parameter 5 = ~ / ( 2 p - 1 )  is 
precisely the sound velocity for these B,, models. 

The stability of these solutions depends explicitly upon the FSH for the AY variables 
when L-t 00. To check this stability, we modify the FSH by A: = a,” +ai( 1 + 8,) in order 
to take into account effects of finite-size corrections. The 8, deviations can be computed 
adopting the technique developed in [24] for the SU(2)x Heisenberg model and 
generalized by the author to ‘nested Bethe ansatz’ systems [25]. Our results, through 
order O(l/L), are 8, =[(2p-I ) ln(2) /4L~]  cosh[2~a,P/(2p- l)]. This last expression 
is in accord with the exact results of table 1 within 7% on average. The difference is 
due to the next order in O(l /L) ,  not accounted for in this 6, expression. We believe 
that the direct VBS extrapolations of the imaginary parts of the AY’S roots and this last 
8, calculation support the stability of our F S H .  

Now we would like to consider the finite-size corrections for the eigenspectra of 
these B, NSLES models. The conformal anomaly c,, and the conformal dimensions X! 
can be estimated from the finite-size corrections of the ground state energy E:( L) and 
of the excited states E:( L ) .  More precisely [ 1,26,27], extrapolating the following 
estimates 

L 
x:(L) =-(E!(L) - E,P(L)) 

2 L.T 
(7) 

we are able to compute cp and X:. 
:re m ,  = ml=. . . = mp = L. Solving 

numerically the Bethe ansatz equations and substituting the A; solution into (2). we 
can compute the estimate (6). The results are shown in table 2 forp  = 2,3. These results 
suggest that the central charge e is given by e, = p +f .  We now concentrate our attention 
upon the spinless excited states for the E ,  NSLES model. The spinless excited states 
are parametrized by a set of integer numbers (n,, nz, . . . , n p )  that are defined as the 
difference between the number of particles in the ground state and in the respective 

The ground state pertains to the sector \I 
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Table 2. Extrapolated and conjectured results for the central charge with p = 2.3 

I 

8 
16 
24 
32 
40 
Extr. 
Conj. 

p = 2  

2.561 5960 
2.521 298 
2.5125147 
2.508 9669 
2.507 0975 
2.500 5 (7) 
2.5 

p = 3  

3.529 9033 
3.515 6908 
3.5104361 
3.507 9645 
3.506 5418 
3.500 6 (5)  
3.5 

excited state; i.e., n, = L - m,, I = I ,  2, . . . , p. It is important to stress that the next-order 
corrections to (6), (7) are O(l/ln3(L)) and O(l/ln(L)), respectively [2, 11,281. For the 
central charge, the respective logarithmic correction is treatable for a lattice size of 
about L - 30, but the correction O( l / ln( L ) )  for excited states can give non-conclusive 
results for small lattice sizes. In order to avoid this problem, we first solve (1) using 
the FSH. In this case, using a standard technique [5,6], the BAE can be manipulated 
analytically and we conclude that the central charge is c 2 = 2  and the conformal 
dimensions of the spinless excitations are X,,,(n,, n2) =+ (Zn:+n: -Zn ,n , ) .  Ofcourse, 
the last results are not correct, since the FSH solution is valid only in the thermodynamic 
limit ( L + m )  and we are here interested in O(l /L2)  corrections. In order to get the 
correct estimate to the conformal dimensions X ( n , ,  n2)  and at the same time avoid 
these logarithmic corrections, we solve the BAE for the associated excited state ( n , ,  n2)  
and subtract the final solution of the respective FSH solution. In table 3 we show results 
for the difference 6 X ( n , , n , ) = X ( n , , n , ) - X , , , ( n , , n , )  for ( n , , n 2 ) = ( l , 2 ) ; ( 2 , 2 ) .  
From this result and the use of the X,,,( n,, n 2 )  formula, one concludes that X( 1,2) = 

0.6247 ( 5 ) .  X ( 2 , 2 )  = 1.0000 (5). To test the consistency of this method, we solved the 
associated BAE for L- 100. Our results using direct extrapolations of (7), taking into 
account the respective logarithmic corrections, differ about 1% from this ‘difference’ 
method. We can interpret our results for the central charge and the conformal 
dimensions of these B, NSLES models as a composition of two bosonic fields ( c  = 2) 
and a king model ( I )  (c=f) .  The dimensions X(1.2) and X(2,2) can be rewritten 
as X(l,2)=XFsH(l>2)CB(&,&),; X(2,2)=XF,,(2,2)CB(O,0),. On the other hand, 
c = 2.5 and x = are the central charge and the lowest dimension, respectively, in the 
E ,  WZWN conformal field theory. Our results together with the previous results for the 
WZWN model [29] strongly suggest that the B, NSLESS partition function is composed 

Table 3. Extrapolated and conjectured results for the conformal dimensions SX(1.2)  and 
SX(2.2). 

1 

8 
I6 
20 
24 
28 
EXW. 
Conj. 

SX(1,2)  

0.119 0839 

0.123 2078 
0.123 5045 
0.123 6998 
0.1247(5)  
0.125 

a i 2 2  7089 

S X ( 2 . 2 )  

5.653 5781 - 10.’ 
1.447 8 I73 - IO-’ 
1. I40 7027 - IO-’ 
9.427 0641 -IO-‘ 
4:65 (2)  - 10.’ 
0 

1.972 5120- 10.’ 
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of 2pfl king models. In fact, we have observed that the BAE (1) are unstable for 
spinless excitations in the sector ( n l  = 1, n2= l) ,  in accordance with x = $  as the lowest 
dimension. 

In conclusion, we have introduced the FSH solution for the B,, NSLES models. This 
idea has made it possible to determine exactly some properties in the thermodynamic 
limit, as well as finite-size corrections. We believe that this ‘amusing’ FSH clarifies the 
difference between non-simple laced and simple laced exactly solved models. We 
expect ine FSH soiution to be aiso important in caicuiating scattering properties and 
in finite temperature calculations [30]. 

This work was supported partially by CNPq (Brazilian agency) and by NSF Grant 
PHY 86-14185. I thank Richard M Fye for encouragement and a careful reading of 
the manuscript. I also thank John L Cardy for important comments. 
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